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We study the electrohydrodynamic stability of the interface between two superposed
viscous fluids in a channel subjected to a normal electric field. The two fluids can have
different densities, viscosities, permittivities and conductivities. The interface allows
surface charges, and there exists an electrical tangential shear stress at the interface
owing to the finite conductivities of the two fluids. The long-wave linear stability
analysis is performed within the generic Orr–Sommerfeld framework for both perfect
and leaky dielectrics. In the framework of the long-wave linear stability analysis, the
wave speed is expressed in terms of the ratio of viscosities, densities, permittivities
and conductivities of the two fluids. For perfect dielectrics, the electric field always
has a destabilizing effect, whereas for leaky dielectrics, the electric field can have
either a destabilizing or a stabilizing effect depending on the ratios of permittivities
and conductivities of the two fluids. In addition, the linear stability analysis for all
wavenumbers is carried out numerically using the Chebyshev spectral method, and
the various types of neutral stability curves (NSC) obtained are discussed.

1. Introduction
Work on the electrohydrodynamic stability of channel flow has recently attracted

much attention, particularly because of its use in the field of microfluidics. For
instance, in many micro-electro-mechanical-systems (MEMS) devices, rapid mixing is
highly desired and can be achieved by applying an electric field, as in the experiments
of Moctar, Aubrey & Batton (2003), Glasgow, Batton & Aubry (2004) and Lin
et al. (2004). Another application is the generation of drops in microchannels in the
case of immiscible fluids (Ozen et al. 2006b). Electrohydrodynamics (EHD) studies
the interplay between an electric field and fluid mechanics. One aspect of EHD
encompasses, for instance, the influence of the conductivity of the fluids on the
stability of a two-fluid layer flow. According to theory, there exist two approaches
to this problem: the first is the bulk coupled model, which assumes a conductivity
gradient in a thin diffusion layer between the two fluids resulting in an electrical
body force on the fluids. In a series of studies, Melcher and his coworkers used the
bulk coupled model in studying the stability of two fluids stressed by a tangential
electric field with conductivity gradient in a diffusive layer (Hoburg & Melcher 1976).
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Applications of this approach in microchannels can be found in Lin et al. (2004)
who analysed the electrokinetic flow in microchannels with conductivity gradients.
They performed both linear stability analysis and nonlinear simulations following
the framework of Hoburg & Melcher (1976), while also considering the diffusion
of conductivity as in Baygents & Baldessari (1998). Storey et al. (2005) studied the
nonlinear stability using asymptotics, and Chen et al. (2005) investigated the absolute
and convective instabilities for the same problem. Tardu (2004) carried out the linear
stability analysis of a Poiseuille flow under the effect of an electrostatic double
layer (EDL) in a microchannel. The second approach is the surface coupled model
which assumes a jump of conductivity at the interface between the two fluids. This
model assumes constant conductivity in each of the fluid layers, and therefore no
electric body force in each fluid. Melcher and his coworkers also used the surface
coupled model to study the stability of two fluids in an unbounded domain stressed
by a tangential electric field (Melcher & Schwarz 1968) and a normal electric field
(Melcher & Smith 1969). However, zero mean flow is assumed in their study. When
the mean flow is non-zero, even without electric field, the linear stability analysis is
difficult since the linearized Navier–Stokes equations reduce to the Orr–Sommerfeld
equation for which there is no exact solution. Thus, various asymptotic techniques
have been developed to study the interfacial stability of a two-fluid flow.

Yih (1967) first studied two superposed viscous fluids with different viscosities in
a channel. He carried out the long-wave linear stability analysis for both Couette
flow and Poiseuille flow, and showed that there exists an unstable mode due to
viscosity stratification at any Reynolds number, except in some limiting cases, for
example, the ‘thin-layer effect’ discussed by Chen (1995) – see below. This mode,
termed the interfacial mode, is caused by the jump of fluid viscosity at the interface,
and clearly distinguishes itself from the shear mode which originates in the mean flow
velocity. Asymptotic techniques can be applied to various two-fluid problems, see,
for example, the short-wave analysis for Couette flow in an unbounded domain of
Hooper & Boyd (1983), the long-wave analysis for Poiseuille flow in a channel of
Yiantsios & Higgins (1988) and Hooper (1989), and the study at all wavenumbers
and Reynolds numbers in the case where the two fluids have similar mechanical
properties (density, viscosity) of Renardy (1987). In general, for Couette flow, the
Orr–Sommerfeld equation can be simplified and, in this case, it is possible to obtain
solutions by using Airy functions and Airy integrals. In contrast, for Poiseuille flow,
asymptotic solutions have to be constructed. A comprehensive summary on the
stability analysis of two-fluid systems can be found in Joseph & Renardy (1993). For
a more recent review of stratified viscous shear flows (including viscoelastic flows),
see Chen (1995) and note his discussion of a lower-viscosity thin-layer stability to
long waves effect – this is addressed in the context of electrohydrodynamics in § 4.2
(in particular, in the discussion of figures 14 and 15).

The study of the electrohydrodynamic (EHD) stability of the interface between two
superposed fluids in either a confined channel or an unbounded domain under the
influence of an electric field has been an active research area since the pioneering work
of Melcher & Schwarz (1968) and Melcher & Smith (1969). In this work, we study
the EHD stability of two superposed fluids in a channel using the surface coupled
model. In this approach, the electric body force vanishes and the electric problem is
decoupled from the fluid problem. The electric field changes the tangential and normal
shear stress at the interface and thus alters the stability of the flow. Most of the works
published in the literature so far have focused on using different asymptotic techniques
to derive the dispersion relation. However, numerical results at all wavenumbers
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have not been reported. Abdella & Rasmussen (1997) studied Couette flow in the
unbounded domain subjected to a normal electric field. They considered two viscous
fluids with different viscosities, densities, conductivities and permittivities and used
Airy functions and Airy integrals to derive a generic dispersion relation; they studied
two special cases in detail: the electrohydrodynamic free-charge configuration (EH-If)
(Melcher 1963) and the electrohydrodynamic polarization charge configuration (EH-
Ip) (Melcher 1963). Mohamed, Elshehawey & ElSayed (1995) concentrated on two
superposed viscous fluids in a channel subjected to a normal electric field where the
upper fluid is highly conducting while the lower fluid is dielectric, which is known as
the limiting EH-If case where the interface, which is perfectly conducting, carries free
charges. The EH-If case is an example where there is no electrical tangential shear
stress induced by the electric field at the interface. Mohamed et al. (1995) performed
the long-wave linear stability analysis following Yih’s analysis. The conductivity of
the upper fluid is accounted for in their analysis, as well as the polarization forces
acting normal to the interface. They discussed both Couette flow and Poiseuille flow
subjected to a normal electric field and showed that the electric field always has
a destabilizing effect on the flow. As shown later, their work can be treated as a
special case of the present study. Tilley, Petropoulos & Papageorgiou (2001) and
Savettaseranee et al. (2003) studied the rupture of a thin film under the action of
an electric field. A review of electrohydrodynamic stability can be found in Saville
(1997). Related work on electrohydrodynamic instabilities in liquid sheets, and the
ensuing nonlinear features have been investigated by Papageorgiou & Vanden-Broeck
(2004) using direct numerical simulations and asymptotics.

In this paper, we perform the linear stability analysis of a two-fluid flow in a
channel subjected to a normal electric field. The configuration of our system is
generic in that the two fluids are assumed to have different densities, viscosities,
permittivities and conductivities. The interface is not perfectly conducting and admits
free charges because the two fluids have finite conductivities. We first derive the
long-wave asymptotic dispersion relation and then present numerical calculations
using the Chebyshev spectral method valid for all wavenumbers. This paper is
organized as follows. In § 2, we present the mathematical formulation of our EHD
problem; in § 3, we perform the long-wave linear stability analysis, derive the wave-
speed eigenvalue and then discuss the influence of the electric field on the two-fluid
system in detail; in § 4, we present results of our numerical calculations for the
linearized electrohydrodynamic problem valid for all wavenumbers, and finally draw
our conclusions in § 5.

2. The physical and mathematical model
We consider a two-layer system of two superimposed conducting viscous fluids in a

long channel (figure 1). The lower fluid is referred to as fluid 1, while the upper fluid
is denoted fluid 2. Fluid j (j = 1, 2) is assumed to have density ρj , dynamic viscosity
µj , electric permittivity εj and electric conductivity σj . Here in after, x denotes the
streamwise direction, while y refers to the direction normal to the walls. The origin
of the y-axis is chosen to coincide with the initial interface between the two fluids so
the initial interface is at y =0. The initial height of the lower fluid layer is h1 and
that of the upper fluid layer is h2. When considering Couette flow, the upper wall
of the channel is assumed to have a constant horizontal velocity U0, while the lower
wall is fixed. Accordingly, the mean horizontal velocities of the fluids are denoted by
U (1)(y) and U (2)(y). The two fluids are assumed to be incompressible, and the flow
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Figure 1. Schematic of the physical problem.

is two-dimensional. The equations of motion are given by the continuity and the
Navier–Stokes equations

∇ · u(j ) = 0, (2.1)

ρj

[
∂u(j )

∂t
+

(
u(j ) · ∇

)
u(j )

]
= −∇pj − ρjg y + µj ∇2u(j ), (2.2)

where j = 1, 2, refers to fluids 1 and 2, respectively, and u(j ) = u(j )x + v(j ) y is the
velocity field. Throughout this work, we use the surface coupled model rather than
the bulk coupled model. The permittivity and conductivity are assumed to be constant
in each fluid, and thus the body force induced by the electric field vanishes in the
bulk of each fluid. The coupling between the motion of the two fluids occurs through
a jump of permittivity and conductivity across the interface.

The fluid velocity satisfies the no-slip boundary condition at both the upper and
lower walls, i.e.

u(2)(h2) = U0, v
(2)(h2) = 0, (2.3)

u(1)(−h1) = 0, v(1)(−h1) = 0. (2.4)

The interface between the two fluids is defined by F (x, y, t) = y − S(x, t) = 0 and the
unit vector ns , outward normal to the interface, can be written as ns = ∇F/|∇F | =
(−Sx x + y)(1 + S2

x )
−1/2. At the interface between the two fluids, the velocity meets the

kinematic constraint that the fluids move with the interface y = S(x, t), so that

St + Sxu
(j ) = v(j ), y = S(x, t). (2.5)

The two walls are both solid boundaries and electrodes. The upper wall is energized
at the constant electric potential V0 while the lower one is grounded so that its
electric potential is zero. The two fluids are thus subjected to a normal electric
field E(j ) = − ∇V (j ), (j = 1, 2). The electric potentials V (j )(x, y, t) satisfy the Laplace
equation

∇2V (j ) = 0, (2.6)

with the following boundary conditions on the upper and lower walls

V (2)(h2) = V0, (2.7)

V (1)(−h1) = 0. (2.8)
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The continuity of the tangential component of the electric field at the interface reads

ns ×
[
∇V (j )

]1

2
= 0, (2.9)

where the bracket is defined by [A(j )]12 =A(1) − A(2), A(j )(j = 1, 2) being any scalar or
vector variable. The above condition can be written as

Sx

[
V (j )

y

]1

2
+

[
V (j )

x

]1

2
= 0, y = S(x, t).

For leaky dielectrics, the conservation equation for the interfacial charge reduces to

ns ·
[
σj ∇V (j )

]1

2
= 0 (j = 1, 2). (2.10)

when the ratio of the fluid to electric time scales

τF

τE
=

µh/γ

ε0/σ
(2.11)

is large. Equation (2.10) can be further rewritten as

Sx

[
σjV

(j )
x

]1

2
=

[
σjV

(j )
y

]1

2
, y = S(x, t).

Notice that for perfect dielectrics with no surface charges at the interface, the
boundary condition (2.10) is replaced by the continuity of the normal component of
the displacement field εj E(j ) (j = 1, 2). This is effectively obtained by replacing the
conductivities σj with the permittivities εi of the two fluids.

There are four important boundary conditions at the interface y = S(x, t) given by
the continuity of the tangential and normal velocity components, and the continuity
of the tangential and normal stresses. The continuity of the tangential and normal
velocity components across the interface leads to

u(1) = u(2), y = S(x, t), (2.12)

v(1) = v(2), y = S(x, t). (2.13)

The surface stress is composed of the hydrostatic pressure, the viscous stress and the
electrical stress. The stress tensor τ

(j )
lm is expressed by

τ
(j )
lm = − pjδlm + µj

(
∂u

(j )
l

∂xm

+
∂u(j )

m

∂xl

)
+ M

(j )
lm ,

where j = 1, 2 refers to fluids 1 and 2. Here, pj (j =1, 2) denotes the hydrostatic

pressure, δlm is the Kronecker delta symbol, and M
(j )
lm represents the electric Maxwell

stress tensor whose expression is

M
(j )
lm = εjE

(j )
l E(j )

m − 1
2
εjE

(j )
l E

(j )
l δlm,

which shows that M
(j )
11 = 1

2
εj [(E

(j )
1 )2 − (E(j )

1 )2], M
(j )
12 = M

(j )
21 = εjE

(j )
1 E

(j )
2 , M

(j )
22 =

1
2
εj [(E

(j )
2 )2 − (E(j )

1 )2], where E
(j )
1 = ∂V (j )/∂x, E

(j )
2 = ∂V (j )/∂y.

The tangential shear stress consists of the balance between the viscous stress and
the electrical stress such that[

Sx

(
τ

(j )
22 − τ

(j )
11

)
+

(
1 − S2

x

)
τ

(j )
12

]1

2
= 0, (2.14)

while the normal stress at the interface, balanced by the surface tension, takes the
expression [

S2
xτ

(j )
11 − 2Sxτ

(j )
12 + τ

(j )
22

]1

2
= T Sxx

(
1 + S2

x

)−1/2
, (2.15)

where T is the surface tension coefficient.
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Equations (2.1)–(2.15) comprise our mathematical model for the electrohydro-
dynamic problem. We now non-dimensionalize the system of equations with the
length scale L, the velocity at the interface Uint and the constant electric potential V0.
The dimensionless variables are:

x∗ =
x

L
, y∗ =

y

L
, S∗ =

S

L
, t∗ =

tUint

L
, U (j )∗(y) =

U (j )(y)

Uint

, η1 =
h1

L
, η2 =

h2

L
,

µ =
µ2

µ1

, ρ =
ρ2

ρ1

, ε =
ε2

ε1

, σ =
σ2

σ1

, n =
h2

h1

, V (j )∗(x, y, t) =
V (j )(x, y, t)

V0

,

p∗ =
p

ρ1U
2
int

, F =
U 2

int

gL
, T =

T0

ρ1U
2
intL

, Eb =
ε1V

2
0

ρ1U
2
intL

2
, Rej =

ρjUintL

µj

,

where j = 1, 2 refers to fluids 1 and 2, and the superscript ∗, which denotes the
dimensionless variables, will later be dropped from the equations. For flow in a
bounded domain such as a channel, the typical length L can be any dimensional
length of the system. For instance, Yih (1967) used the height of the upper fluid layer
h2, i.e. L =h2, Hooper (1989) used the height of the lower fluid layer h1, i.e. L =h1,
whereas Renardy (1985) used the height of the whole channel, i.e. L = h1 + h2. When
the two fluid layers are of the same height in the channel, we have η1 = η2 = 1 with L

being either h1 or h2. For a flow in an unbounded domain, the typical length L can
be any well-defined dimensional length. In our calculations, the length scale is chosen
to be the height of the lower fluid, h1. Furthermore, the ratio of the initial heights of
the two fluids is n, the viscosity ratio µ, the density ratio ρ, the permittivity ratio ε,
and the conductivity ratio σ . The dimensionless parameters consist of the Reynolds
numbers in each fluid layer Re1 and Re2 with Re2/Re1 = ρ/µ, the Froude number F

accounting for the gravity effect, the surface tension parameter T , and the ratio of
the electric-field-induced pressure to the inertial forces Eb. Note that when the electric
field is turned off, Eb =0.

An exact solution of the Navier–Stokes equations driven by a constant pressure
gradient and a constant wall velocity (i.e. a mixed Poiseuille/Couette flow) is given,
in dimensionless form, by

U (1)(y) = A1y
2 + a1y + 1, −η1 � y � 0, (2.16)

U (2)(y) = A2y
2 + a2y + 1, 0 � y � η2, (2.17)

where the coefficients, determined from the wall and interfacial boundary conditions,
are A2 = (µη1un − (µη1 + η2))/µη1η2(η1 + η2), A1 =µA2, a2 = (µη2

1un + η2
2 − µη2

1)/
µη1η2(η1 + η2) and a1 = µa2. For Couette flow, the velocity profile is linear and
the upper wall moves with velocity un = (µη1 + η2)/µη1; for Poiseuille flow, the upper
wall is fixed and un = 0.

The resulting dimensionless system of equations is summarized in Appendix A.

3. Linear stability analysis
In this section, we perform the long-wave linear stability analysis of the above

EHD problem. For this purpose, we use the normal mode method and assume
that the interface S takes the form S = ŝexp(ik(x − ct)), where ŝ is the complex
surface amplitude, k is a real number denoting the wavenumber, c = cr + ici is a
complex number representing the wave speed, and cik refers to the growth rate which
determines the stability property of the system. Specifically, when ci < 0, the system
is stable, when ci > 0, the system is unstable and when ci = 0, the system is neutrally
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stable. We next present the linear equations and deduce asymptotically the solution
of the eigenvalue problem valid for long waves (k → 0).

We first notice that the equations of the electric field (see Appendix A, (A9)–(A13))
are decoupled from those of the flow field and can thus be solved independently. The
basic state electric potential V

(j )
0 (y) is obtained by solving the Laplace equations in

the two fluid layers to yield

V (1)(x, y, t) =
σy + ση1

η2 + ση1

+ χ (1)(x, y, t),

V (2)(x, y, t) =
y + ση1

η2 + ση1

+ χ (2)(x, y, t),

where the first terms are the basic states and χ (j ) (j = 1, 2) are the perturbed electric
potentials, which also satisfy the Laplace equation ∇2χ (j ) = 0. The linearized system
for the perturbed electric potential χ (j ) reads

χ (j )
xx + χ (j )

yy = 0, j = 1, 2, (3.1)

χ (1)(−η1) = 0, (3.2)

χ (2)(η2) = 0, (3.3)

Sx

σ − 1

η2 + ση1

+
(
χ (1)

x − χ (2)
x

)
= 0 on y = 0, (3.4)

χ (1)
y = σχ (2)

y on y = 0. (3.5)

The solutions of χ (j )(j =1, 2) are also expressed in the form of normal modes to
obtain

χ (1) = − ŝ(σ − 1)σ

(tanh kη2 + σ tanh kη1)(η2 + ση1)

sinh k(y + η1)

cosh kη1

exp(ik(x − ct)), (3.6)

χ (2) = − ŝ(σ − 1)

(tanh kη2 + σ tanh kη1)(η2 + ση1)

sinh k(y − η2)

cosh kη2

exp(ik(x − ct)). (3.7)

Regarding the flow field, we linearize the Navier–Stokes equations using u(j ) = U (j )+
u

′(j ), v(j ) = v
′(j ), p(j ) = p

(j )
0 +p

′(j ) (j = 1, 2), where the primes denote small perturbation

variables and p
(1)
0 =−y/F , p(2)

0 =−ρy/F . Using the streamfunction ψ (j )(x, y, t) related
to the velocity perturbations by u′(j ) = ∂ψ (j )/∂y, v′(j ) = −∂ψ (j )/∂x, and assuming
ψ (j )(x, y, t) =φ(j )(y)exp(ik(x − ct)), where φ(j )(y) is the complex amplitude, the
Navier–Stokes equations are linearized to give the usual Orr–Sommerfeld equation
for fluids 1 and 2. In summary, we have obtained the following linearized system
of equations and boundary conditions for the two streamfunction amplitudes φ(1)

and φ(2):(
d2

dy2
− k2

)2

φ(1) = ikRe1

[(
U (1) − c

)( d2

dy2
− k2

)
φ(1) − φ(1) d

2U (1)

dy2

]
, (3.8)

(
d2

dy2
− k2

)2

φ(2) = ikRe2

[(
U (2) − c

)( d2

dy2
− k2

)
φ(2) − φ(2) d

2U (2)

dy2

]
, (3.9)

φ(1)(−η1) = φ(1)
y (−η1) = 0, (3.10)

φ(2)(η2) = φ(2)
y (η2) = 0, (3.11)

φ(1)(0) = φ(2)(0) = φ(0), (3.12)
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dφ(1)

dy
(0) − dφ(2)

dy
(0) =

φ(0)

c − 1
(a2 − a1), (3.13)(

d2

dy2
+ k2

)
φ(1) − µ

(
d2

dy2
+ k2

)
φ(2) + ikRe1EbQT ŝ = 0 on y = 0, (3.14)

(
d2

dy2
− 3k2

)
dφ(1)

dy
− µ

(
d2

dy2
− 3k2

)
dφ(2)

dy
,

+ ikRe1(ρQ0 − k2T ŝ − EbQNŝ) = 0 on y = 0, (3.15)

where Q0, QT , QN are given by

Q0 =
ρ − 1

ρF
ŝ + (c − 1)

(
1

ρ

dφ(1)

dy
− dφ(2)

dy

)
+ φ(0)

(
1

ρ
a1 − a2

)
, (3.16)

QT =
1

(η2 + ση1)2

[
(σ 2 − ε) − (σ − 1)

ε tanh kη2 + σ 2 tanh kη1

tanh kη2 + σ tanh kη1

]
, (3.17)

QN =
(σ − 1)(ε − σ 2)

(η2 + ση1)2
k

tanh kη2 + σ tanh kη1

. (3.18)

Here, Q0 represents the effect of gravity, while QT and QN represent the influence
of the electric field on the tangential and normal stress balance at the interface,
respectively. For the electrical tangential shear stress factor QT , there are two limiting
cases, which we now discuss. The first case is that of perfect dielectrics without
surface charges at the interface (EH-Ip) (Melcher 1963), for which we replace σ by ε,
leading to QT =0. In this case, we thus recover the result that perfect dielectrics do
not induce electrical tangential shear stresses, but only normal electrical stresses at
the interface. The second limiting case corresponds to a perfectly conducting surface
in the situation where one fluid has a much higher conductivity than the other. It
follows that the charge relaxation time is short compared with the typical mechanical
time scale (EH-If)) (Melcher 1963), i.e. σ → 0 (or σ → ∞), in which case we also have
QT → 0, thus recovering the result that the electrical tangential shear stress vanishes
at the interface (Mohamed et al. 1995). However, for leaky dielectrics with surface
charges at the interface and two fluids that are not perfectly conducting, we must
bear in mind that there is an electrical tangential shear stress at the interface, induced
by the electric field. As we will see in the analysis below, the presence of an electrical
tangential shear stress greatly changes the stability of the two-fluid-layer system as
previously investigated by Ozen et al. (2006a). Ozen and his coworkers have looked at
the effect, of an electric field on the instability of an interface between two immiscible
liquids in channel flow, where the interface admits free charge (Ozen et al. 2006a).
Similar findings have also been reported by Papageorgiou & Petropoulos (2004) and
Ozen et al. (2006c), in the related problem of fluid sheets stressed by a horizontal
electric field (linear and nonlinear theories are presented) – the field effect is typically
stabilizing in such configurations unless the leaky dielectric model is used.

Another observation from the above linearized results is that when ε = σ 2, then
QN =0 but QT �= 0, which implies that the electrical normal stress at the interface
could vanish while the electrical tangential shear stress is still present. The stability
of the flow will then be driven by the electrical tangential shear stress alone when
ε = σ 2. Furthermore, depending on ε >σ 2 or ε <σ 2, the normal electrical stress acts
in different directions across the interface, an issue which will be discussed in more
detail when we present the results of our numerical calculations.
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3.1. Long-wave asymptotics

We now carry out the long-wave linear stability analysis which is valid for k → 0,
and expand φ(1), φ(2), c, ŝ as follows:

φ(1) = φ
(1)
0 + kφ

(1)
1 + O(k2), φ(2) = φ

(2)
0 + kφ

(2)
1 + O(k2),

c = c0 + kc1 + O(k2), ŝ = ŝ0 + kŝ1 + O(k2).

Using the kinematic constraint condition (2.5) at the interface, we can write St +
U (1)Sx = v(1), which gives ŝ =φ(1)(0)/(c − U (1)(0)) = φ(0)/(c − 1) and ŝ0 = 1/(c0 − 1),
ŝ1 = −c1/(c0 − 1)2, where we have used the facts that φ(1)(0) = φ(2)(0) = φ(0) = 1 and
U (1)(0) = U (2)(0) = 1. Since the electric field enters through the boundary conditions of
the tangential and normal stress balance at order k, it does not affect the leading-order
problem. We also observe that the surface tension appears at the higher order O(k3),
which implies that it does not affect the long-wave result, but plays an important role
in stabilizing sufficiently short waves. The leading-order problem, first studied by Yih
(1967), is given by

c0 − 1 = QL(µ, η1, η2)(a2 − a1), (3.19)

where

QL(µ, η1, η2) =
2µη2

1η
2
2(η1 + η2)

µ2η4
1 + η4

2 + 2µη1η2

(
2η2

1 + 3η1η2 + 2η2
2

) . (3.20)

Note that we have used a different convention from Yih and his result can be
recovered by replacing µ by 1/µ.

For simplicity of presentation, we have deferred the solution of the first-order
problem to Appendix B. This solution gives the following first-order correction to the
eigenvalue c:

c1 = iRe2(J0 + JE), (3.21)

where Re2 = Re1ρ/µ is the Reynolds number of the upper fluid and

J0 = µQ2
L(a2 − a1)H12, (3.22)

JE = −µQL

[
η1η2((1/µ)η2 + η1)

6(η1 + η2)
QN +

(1/µ)η2
2 − η2

1

4(η1 + η2)
QT

]
Eb

ρ
. (3.23)

The first term is that first obtained by Yih (1967) in the absence of an electric field.
The details of H12 in the expression of J0 can be found in Appendix B. The second
term containing JE represents the correction of the electric field to the first-order
eigenvalue c1. Note that JE is not related to the velocity profile of the mean flow, but
depends on ε, σ , µ, η1 and η2, and increases linearly with Eb. The electric field has a
destabilizing (stabilizing) effect on the flow field when JE > 0 (JE < 0).

It is worth pointing out that in the absence of an electric field Eb = 0, JE is also
equal to zero and the two-fluid system can be neutrally stable when J0 = 0. This
occurs when µ = 1, µ = n2 for Poiseuille flow and when µ = 1 for Couette flow. Since
the neutrally stable mode implies that there is no viscous tangential shear stress at
the interface, and since for leaky dielectrics without a perfectly conducting interface
(σ1, σ2 finite) an electrical tangential shear stress is induced across the interface, the
mathematical model of the EHD problem does not hold for leaky dielectrics without
a perfectly conducting interface in these special cases. This is because the induced
electrical tangential shear stress at the interface is no longer balanced by the viscous
tangential shear stress. There is thus a need for other models to study the impact
of the electric field on the neutrally stable modes for leaky dielectrics without a
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perfectly conducting interface. However, our model is still valid for perfect dielectrics
(σ replaced by ε) or for perfectly conducting interfaces where σ → 0 or σ → ∞.

We now investigate the electric field effects on the stability of the flow in the
long-wave regime. Using (3.21), we obtain instability when (J0 + JE) > 0 and stability
when (J0 + JE) < 0. In addition, JE can be rewritten as

JE =−µQL

[
η1η2((1/µ)η2 +η1)

6(η1 +η2)

(σ −1)(ε−σ 2)

(η2 +ση1)3
+

(1/µ)η2
2 − η2

1

4

σ (σ − ε)

(η2 + ση1)3

]
Eb

ρ
, (3.24)

with QL given by (3.20). For perfect dielectrics (i.e. no charges at the interface), we
replace σ by ε as explained earlier, to obtain

JE = µQL

η1η2((1/µ)η2 + η1)

6(η1 + η2)

ε(ε − 1)2

(η2 + εη1)3
Eb

ρ
> 0. (3.25)

It follows that for perfect dielectrics, the electric field is always destabilizing for the
problem studied here. In this limit, there are no electrical tangential shear stresses at
the interface (EH-Ip). Another situation where the electric field does not induce a
tangential shear stress, is the case where the interface is perfectly conducting (EH-If)
and supports surface charges, as in Mohamed et al. (1995). Their result is a special
case of ours and is recovered by setting σ → ∞ in (3.24) so that

JE = µQL

η2((1/µ)η2 + η1)

6η2
1(η1 + η2)

Eb

ρ
> 0. (3.26)

Hence, the electric field is again destabilizing. A similar conclusion can be drawn in
the limiting case σ → 0.

In contrast to these findings, for leaky dielectrics where the finite conductivity of
the fluid plays a role and a tangential shear stress is present at the interface, the
electric field can have either a destabilizing or a stabilizing effect, depending on the
ratio of conductivities and permittivities of the two fluids. In order to further analyse
the expression (3.24) of JE , we set η2 = n, η1 = 1, define

α =
η1η2((1/µ)η2 + η1)

6(η1 + η2)
=

n(n/µ + 1)

6(n + 1)
, β =

(1/µ)η2
2 − η2

1

4
=

n2/µ − 1

4
, (3.27)

and rewrite JE as

JE = − µQL

(n + σ )3
[α(σ − 1)(ε − σ 2) + βσ (σ − ε)]

Eb

ρ
. (3.28)

It is then clear that the sign of JE depends on the specific values of σ , ε, µ and n.
Since α > 0 holds for all µ and n, we consider the effect of β on the sign of JE . The
following representative cases are of interest:

(i) β < 0, i.e. µ>n2. In this case, the curve JE =0 is shown in figure 2 in the σ, ε

domain for representative parameters (a) µ = 2, n= 0.8 and (b) µ =0.25, n= 0.2. Note
that the curve JE = 0 has a vertical asymptote σ =α/(α − β) indicated on the figures
by a dashed line.

(ii) β > 0, i.e. µ<n2. In this case, the sign of JE depends not only on ε and σ , but
also on the relative value of α and β (i.e. µ and n).

(i) Figure 3 gives representative results for the case where α >β and (a) µ = 8.0,
n=3.0, (b) µ = 0.1, n= 1/3. The curve JE = 0 has a vertical asymptote as before.

(ii) Figure 4 shows two other examples with α < β for the parameters (a) µ = 0.5,
n=2.0 and (b) µ = 0.1, n= 0.5. The curve JE = 0 has no vertical asymptote in this
case.
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Figure 2. Long-wave analysis. The curve JE = 0 is represented in the (ε, σ )-plane for two
cases where µ > n2: (a) µ= 2, n= 0.8; (b) µ= 0.25, n= 0.2.
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Figure 3. Long-wave analysis. The curve JE = 0 is represented in the (ε, σ )-plane for two
cases where µ < n2 and α > β: (a) µ= 8, n= 3; (b) µ= 0.1, n= 1/3.

(iii) β = 0, i.e. µ = n2. As we discussed earlier, our model cannot be applied to a
Poiseuille flow having a neutral stable mode. The model is valid for Couette flow,
however, and the sign of JE is determined by (σ − 1)(ε − σ 2) alone. The sign of JE for
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Figure 4. Long-wave analysis, curve JE = 0 in the (ε, σ )-plane when µ < n2 and α < β .
(a) µ= 0.5, n= 2; (b) µ= 0.1, n= 0.5.
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Figure 5. Long-wave analysis. The curve JE =0 is represented in the (ε, σ )-plane with
µ= n2. This is for the case of Couette flow only.

µ = n2 can be identified in figure 5 where the curve JE = 0 is displayed in the (σ, ε)
plane. It is clear that with different choices for σ and ε, JE can be either positive or
negative, so the flow can be either stabilized or destabilized by the electric field.

Note that the electric field can have a stabilizing effect on the system. As our
analysis shows, this stabilizing effect is a result of the tangential shear stress induced
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by the electric field. It has been pointed out by Melcher & Smith (1969) that it is
inconsistent to ignore electrical shear forces in finite conductivity viscous flows. Indeed,
when the interface supports free charges but is not perfectly conducting, electrical
shear forces are important and cannot be neglected. Furthermore, an inviscid model
is not expected to produce accurate results in these types of problems.

Next, we discuss the behaviour of JE in the limit where the viscosity of one of
the fluids approaches zero or infinity. If the electric field is absent, the system has
a neutrally stable interfacial mode. When the viscosity of one of the fluids becomes
very small, supposing that the viscosity of the top fluid goes to zero and thus
µ = µ2/µ1 → 0, we find that JE is of order µ (QL = O(µ) also). However, when
µ2 → 0, Re2 ∼ O(1/µ), we deduce from (3.21) that the electric field contribution to
the first-order correction c1 is of order 1, i.e. Re2JE =O(1). This implies that when
the top fluid is much less viscous, the electric field can still have a significant effect
on the flow stability. Similar conclusions can be drawn for the case µ → ∞ where the
viscosity of the top fluid becomes very large.

The stability characteristics described in this section are indicative of the flow
development at small wavenumbers. Computational studies must be undertaken,
however, in order to calculate the stability characteristics at arbitrary values of k, and
this is performed in the remainder of the paper.

4. Spectral method for the linear problem
In this section, we solve the linear electrohydrodynamics problem numerically

for all wavenumbers. For this purpose, we use the Chebyshev tau QZ algorithm
to discretize the system of equations, together with the D2-method proposed by
Dongarra, Straughan & Walker (1996). Introducing the variables ξ (1) = (d2/dy2 −
k2)φ(1), ξ (2) = (d2/dy2 − k2)φ(2), we can write the system of equations in the following
form (see Appendix B): (

d2

dy2
− k2

)
φ(1) − ξ (1) = 0,(

d2

dy2
− k2

)
ξ (1) − ikRe1U

(1)ξ (1) + 2ikRe1A1φ
(1) = −cikRe1ξ

(1),(
d2

dy2
− k2

)
φ(2) − ξ (2) = 0,(

d2

dy2
− k2

)
ξ (2) − ikRe2U

(2)ξ (2) + 2ikRe2A2φ
(2) = −cikRe2ξ

(2).

The computational domain is then mapped to (−1, 1) for each fluid layer by the
transformation

z = −2y − 1, −1 � y � 0,

z =
2

n
y − 1, 0 � y � n,

where z = −1 corresponds to the interface between the two fluids. The four functions
φ(1), ξ (1), φ(2), ξ (2) are then expanded in series of Chebyshev polynomials Tn(z). For
N Chebyshev polynomials, we solve for the eigenvalues of a 4N × 4N matrix. The
continuity of the tangential and normal velocity components, and the continuity of



360 F. Li, O. Ozen, N. Aubry, D. T. Papageorgiou and P. G. Petropoulos

the tangential and normal stresses at the interface then take the form

φ(1) = φ(2), (4.1)

dφ(1)

dz
+

1

n

dφ(2)

dz
+

a1(1 − µ)

2µ
ŝ = 0, (4.2)

2k2φ(1) + ξ (1) − 2k2µφ(2) − µξ (2) + ikRe1EbQT ŝ = 0, (4.3)

−2k2 dφ(1)

dz
+

dξ (1)

dz
− 2k2 µ

n

dφ(2)

dz
+

µ

n

dξ (2)

dz
+ 1

2
ikRe1EbQNŝ = 0. (4.4)

The interfacial amplitude ŝ in (4.2)–(4.4) is given by ŝ = φ(1)(−1)/(c − 1). When
µ �= 1 and a1 �= 0, the amplitude of the interface ŝ in (4.3)–(4.4) is given by
ŝ = −(dφ(1)/dz1 + (1/n) (dφ(2)/dz2)(2µ/a1(1 − µ)). The eight boundary conditions are
placed in the j (N − 1)-th and jN-th (j = 1, 2, 3, 4) rows, as suggested by Dongarra
et al. (1996).

Our computational code was verified by running the particular cases QT = 0 and
QN =0, and comparing with the results of Orszag (1971), Renardy (1985), Yiantsios
& Higgins (1988), Hooper (1989) and Dongarra et al. (1996). In addition, since to our
knowledge no EHD stability calculations have been reported in the literature so far,
we used the long-wave results of the previous section to verify the code. We focus,
first, on the effect of the electric field (Eb �= 0) and the viscosity difference (viscosity
stratification) on the stability of the flow, and therefore impose the same density ρ = 1
for the two fluids. The Reynolds number referred to in the computations is that of
the lower fluid, Re1. Finally, we note that the present method has been used in the
absence of electric fields by Nagata (1990), who examined nonlinear effects and the
bifurcation from infinity for plane Couette flow.

4.1. Neutrally stable modes for µ = 1 and µ = n2

As we mentioned earlier, for Poiseuille flow there exist neutrally stable modes when
µ =1 and µ = n2. These neutrally stable modes show that the viscous tangential
shear stress vanishes at the interface between the two fluids, and our model for leaky
dielectrics does not hold since the electrical tangential shear stress can no longer be
balanced. However, our model for perfect dielectrics in the case where ε = σ is still
valid, since perfect dielectrics do not induce any electrical tangential shear stress.
From the long-wave linear stability analysis, we know that the presence of the electric
field in the case of perfect dielectrics always makes the flow unstable. We now present
numerical results for all wavenumbers.

We first study one-fluid Poiseuille flow in a channel with an electric interface at the
midplane of the channel, such that µ = 1, n= 1 but σ �= 1 and ε �= 1, in which case
the interface is due to the difference of permittivities and conductivities between the
two fluids. It is well known that for one-fluid Poiseuille flow in a channel without
an electric field, the critical Reynolds number for the onset of instability is about
Re1 = 5772. Although at higher Reynolds numbers, the instability is driven by the
shear mode instead of the interfacial mode, and the long-wave stability analysis can
no longer explain the instability mechanism, it is still interesting to investigate how the
electric field alters the stability properties at high Reynolds numbers. Figure 6 shows
the results of our computations using the electrical parameters ε = σ =4, Eb = 1, and
shows that the flow is unstable for all the Reynolds numbers we computed (the highest
value being Re1 = 104). We observe here that the flow is unstable for all Reynolds
numbers presented; figures 6(a) to 6(c) show the most unstable eigenvalue ci , the
corresponding most unstable wavenumber k and the most unstable growth rate cik.
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Figure 6. Impact of the electric field on the neutrally stable mode for a perfect dielectric in
the case of a one-fluid Poiseuille flow with an initial electrical interface in the midplane of the
channel. For µ= 1, n= 1 and ρ = 1, the flow is unstable under the action of the electric field for
Re1 � 104 with ε = 4, σ = 4, and Eb = 1. (a) Most unstable mode ci vs. Re1; (b) wavenumber
k of the most unstable mode vs. Re1; (c) corresponding growth rate cik vs. Re1.

Next, we consider the case when the two fluids have the same viscosity (µ = 1),
but different initial heights. We choose the value n= 5 and the electrical parameters
ε = σ =4, Eb = 1. Figure 7 shows that the flow is unstable for Reynolds numbers
as large as 104. Figures 7(a) to 7(c) show the most unstable eigenvalue ci , the
corresponding wavenumber k and the most unstable growth rate cik, respectively.

Finally, we study the case where the two fluids are related by µ = n2. This is
another case which supports neutrally stable modes in the absence of an electric field.
In Figure 8, we show results for µ = 25, n= 5, ε = σ = 4 and Eb = 1. The flow is again
unstable for all computed Reynolds numbers. We observe that an electric field in
the case of perfect dielectrics always has a destabilizing effect. This conclusion was
established analytically using the long-wave theory, and our computations indicate
that it can be extended to all wavenumbers. The result is of interest in practical
applications such as microfluidics, where mixing between two fluids is often desired
and should be realized in the case of perfect dielectrics, at least.

4.2. Two-fluid Poiseuille flow

We turn next to the more general case of a two-fluid Poiseuille flow where the two
fluids have different viscosities (µ �= 1). The two-fluid Poiseuille flow in a channel in
the absence of electric field (Eb = 0) is well documented (Yiantsios & Higgins 1988;
Hooper 1989), and we study the influence of the addition of the electric field on
the flow stability for arbitrary wavenumbers. When Eb =0, and surface tension is
neglected, it has been established (Yiantsios & Higgins 1988; Hooper 1989) that the
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Figure 7. Impact of the electric field on the neutrally stable mode for a perfect dielectric
in the case of a two-fluid Poiseuille flow with the same viscosity for the two fluids. For the
parameter values µ= 1, n= 5, ρ = 1, the flow is unstable under the action of the electric field
for Re1 � 104 with ε = 4, σ = 4 and Eb = 1. (a) Most unstable mode ci vs. Re1; (b) wavenumber
k of the most unstable mode vs. Re1; (c) corresponding growth rate cik vs. Re1.

stability depends on the particular values of the viscosity ratio µ and the layer depth
ratio n. Recall that the long-wave analysis predicts the location of the stable and
unstable domains in the (µ, n)-plane (figure 9). We choose the configuration having
µ =2 and n= 0.8, which is unstable in the long-wave regime (figure 9). However,
when the electric field is turned on, the long-wave stability depends on the choice of
the permittivity and conductivity ratios, ε and σ . Thus, an unstable flow can become
stable or more unstable, while a stable flow can become unstable or more stable.

Figure 10 shows the comparison of the most unstable (or least stable) mode ci as a
function of wavenumber k for this flow configuration obtained from both the spectral
method computation and the long-wave result (3.21) under the action of the electric
field. In all three cases, the long-wave theory describes the stability characteristics
very well for values of k as large as 0.3, approximately. Figure 10(b) and 10(c) show
calculations for non-zero Eb. The results in figure 10(b) correspond to σ = 4, ε =5,
Eb = 0.5, which according to the long-wave theory enhances the instability. This is
indeed the case, as a comparison between figures 10(a) and 10(b) shows. Furthermore,
this instability enhancement persists for larger values of k, as shown in the figure.
The parameters in figure 10(c) are σ = 2, ε = 10, Eb = 0.5, which are values, at which,
according to the long-wave theory, the flow should be fully stable. This stabilization is
again observed to persist to order-one values of k also. It can be concluded, therefore,
that the long-wave analysis is valuable in establishing the qualitative behaviour of
the spectrum.

Figure 11 presents further details of the numerical results for the parameters µ =2,
n=0.8. We present the results up to wavenumbers k =20, for various values of



Electrohydrodynamic mixing in a channel 363

2000 4000 6000 8000 10 0000

0.5

1.0

ci

(a)

(b)

(c)

2000 4000 6000 8000 10 0000

5

10

k

0 2000 4000 6000 8000 10 000

1

2

3

4

5

Re1

ci k

Figure 8. Impact of the electric field on the neutrally stable mode in the case of perfect
dielectrics for a two-fluid Poiseuille flow with two fluids of different viscosities. For µ= 25,
n= 5, ρ = 1, the flow is unstable under the action of the electric field for Reynolds numbers
such as Re1 � 10000 with ε = 4, σ = 4, and Eb =1. (a) Most unstable mode ci vs. Re1; (b)
wavenumber k of the most unstable mode vs. Re1; (c) corresponding growth rate cik vs. Re1.
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Figure 9. Long-wave analysis for Poiseuille flow without electric field: stable and unstable
domains in the (µ, n)-plane.

the electrical parameter Eb. In figure 11(a) to 11(c), we show that the flow can be
completely stabilized with σ =2 and ε =10 as Eb increases; figure 11(a) displays
the most unstable (or least stable) mode ci for Eb =0, 0.1, 0.5; figure 11(b) shows
the growth rate cik for Eb =0, 0.1, 0.5. Here, we see that the growth rate is almost
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Figure 10. Two-fluid Poiseuille flow for the parameter values µ= 2, n= 0.8, Re1 = 1 and ρ = 1.
Comparison of eigenvalues from the long-wave analysis (solid line) and the spectral method
computation (dashed line). (a) Eb = 0, the flow is unstable for long waves without electric field;
(b) Eb =0.5, σ = 4, ε = 5, the flow becomes more unstable under the action of the electric field;
(c) Eb = 0.5, σ = 2, ε = 10, the flow becomes stable under the action of the electric field.
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Figure 11. Two-fluid Poiseuille flow for the parameter values µ= 2, n= 0.8, Re1 = 1 and
ρ = 1: details of the flow stability under the action of the electric field for different values of
Eb . Without the electric field, the flow is unstable in the long-wave regime. (a)–(c) The flow
becomes stable for ε = 10, σ =2; (d)–(f ) the flow becomes more unstable for ε = 5, σ =4.
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Figure 12. Two-fluid Poiseuille flow for the parameter values µ= 8, n= 3, Re1 = 1, ρ = 1;
comparison of the eigenvalues obtained from the long-wave analysis (solid line) and the
spectral method computation (dashed line). (a) Eb =0, the flow is stable in the long-wave
regime without the electric field; (b) Eb = 0.5, σ = 2, ε = 10, the flow becomes more stable
under the action of the electric field; (c) Eb = 0.5, σ =4, ε = 5, the flow becomes unstable
under the action of the electric field.

constant when the wavenumber k is large (short-wave regime). Figure 11(c) shows the
change of the most unstable mode in the initial stages of stabilization with Eb ranging
from 0 to 0.02. In figure 11(d) to 11(f ), we show that the flow can be completely
destabilized when σ = 4 and ε = 5, as Eb increases; figure 11(d) presents the most
unstable mode ci for Eb = 0, 0.1, 0.5, and figure 11(e) displays the growth rate cik for
Eb = 0, 0.1, 0.5; finally, figure 11(f ) shows the change in the most unstable mode in
the initial stages of the destabilization with Eb ranging from 0 to 0.02.

In all cases presented, surface tension is absent. Short-wave instabilities (e.g. in
figure 11e) exhibit a high-wavenumber cutoff when small amounts of surface tension
are present – see later for a quantification of this observation.

In figures 12 and 13, we present results analogous to those in figures 10 and 11,
but for the case where µ = 8, n= 3. According to figure 9, this point is in the stable
region (upper right domain marked S) as opposed to the previous set of results which
are initially in the unstable regime. The results illustrate that the flow can become
more stable (see figure 12(b) for σ = 2, ε =10) or unstable (see figure 12(c) for σ = 4,
ε = 5). Notice that the agreement with the asymptotic theory is again excellent. The
characteristics at larger values of k are shown in figures 13. In figure 13(a), 13(b) and
13(c), we present the destabilization which results from increasing Eb for σ =4 and
ε = 5, while figure 13(d), 13(e) and 13(f ) show the corresponding stabilization with
increasing Eb for the parameters σ = 2, ε =10. Surface tension is again absent and, if
present, is responsible for providing large-wavenumber cutoffs.

Next, we study the effect of the electric field on neutral stability curves (NSC). We
consider two types of NSC. The first type is determined with fixed Reynolds numbers
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Figure 13. Two-fluid Poiseuille flow for the parameter values µ= 8, n= 3, Re1 = 1 and ρ =1:
details of the flow stability under the action of the electric field for different Eb values. Without
the electric field, the flow is stable in the long-wave regime. (a)–(c) The flow becomes unstable
for ε = 5, σ =4; (d)–(f ) the flow becomes more stable for ε =10, σ = 2.

Re1 and fixed viscosity ratios µ, and constructed in the (k, n)-plane, where n is the
depth ratio of the two fluids. The second type is determined by fixing µ and n (i.e.
the flow configuration), and is plotted in the (k, Re1)-plane. We discuss both types of
NSC under the influence of the electric field.

Figure 14 show, the effect of the electric field on the NSC of the first type for fixed
parameter values µ = 2 and Re1 = 1. As already established, the stability depends
on the specific values of σ and ε, and structurally different NSCs are expected for
different pairs (σ, ε). As discussed earlier, in the framework of the linearized EHD
equations, the case ε = σ 2 is a particular example where the electrical normal stress
at the interface vanishes while the electrical tangential stress does not. Furthermore,
the electrical normal stress acts in different directions across the interface for ε >σ 2

and ε <σ 2. We now present results corresponding to the following situations under
relatively small electric fields, Eb =0.1. Figure 14(a) reports the NSC without electric
field Eb = 0, which was discussed in Hooper (1989); here, we see that n=

√
2 is a

neutral stable line. Figure 14(b) shows the NSC when the electric field is applied with
σ = 4 and ε = 15 (ε <σ 2); qualitatively, for n<

√
2, the NSC becomes a closed curve

demarcating an isolated island of stability in a surrounding domain of instability
and n=

√
2 is no longer a neutral stability line; when n>

√
2, the NSC has another

separated branch enclosing a stable region (figure 14b). Figure 14(c) shows the NSC
for σ = 4, ε = 16 (ε = σ 2); note that the NSC now evolves into two separated branches
for n <

√
2 and n>

√
2 while n=

√
2 is still a neutral stability line for roughly k � 1

(this NSC is similar to that corresponding to Eb =0). Figure 14(d) presents the NSC
for σ =4, ε = 17 (ε >σ 2); here, n=

√
2 is no longer a neutral stability line, and the

shape of the curve is notably different from that of figure 14(b) and 14(c) and has an
interesting topology.
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Figure 14. Two-fluid Poiseuille flow for the parameter values µ= 2, Re1 = 1 and ρ = 1: Neutral
stability curve in the (k, n)-plane under the action of the electric field. (a) Eb = 0; (b) Eb = 0.1,
σ = 4, ε = 15 (ε <σ 2); (c) Eb = 0.1, σ =4, ε = 16 (ε = σ 2); (d) Eb =0.1, σ = 4, ε = 17 (ε > σ 2).

It is worth mentioning that the shape of the NSC can be very complicated and
typically it is difficult to predict how the curves change with the electric field. Next,
we study the case having µ = 2 and Re1 = 1, but with an increased electric field such
that Eb = 1. The NSCs in the (k, n)-plane are shown in figure 15 in three different
domains of the electric field, i.e. ε < σ 2, ε = σ 2 and ε > σ 2. In all three cases, the curves
for n< 1, approximately, are quite intricate (figures 15a, 15c, 15e). Figures 15(a) and
15(b) present results for σ =4 and ε =15 (ε <σ 2). We observe that for n<

√
2 in

figure 15(a), the NSC consists of two separate branches and for small values of n

(e.g. n ≈ 0.15). As a result, the flow can be stable, unstable, then stable and finally
unstable again when the wavenumber k increases from long to short wavenumbers,
with n fixed. There is another branch at about n> 8.5 (figure 15b), and by comparing
this branch with that of figure 14(b), we conclude that increasing the value of Eb

from 0.1 to 1 makes the flow unstable in the region
√

2 < n � 8.5. Figures 15(c)
and 15(d) present the results for σ = 4 and ε =16 (ε = σ 2); the NSC in this case has
three branches for n<

√
2 as seen in figure 15(c), and n=

√
2 is still a neutral stable

line for about k > 5 (short waves). Figures 15(e) and 15(f ) depict results for σ =4
and ε = 17 (ε >σ 2). Here, the NSC has two branches for n> 1 and for some certain
values of n, e.g. n= 10, the flow is unstable, stable, then unstable and finally stable
again when k increases from small to large wavenumbers. These numerical results
at general values of k, imply that a sufficiently strong electric field can destabilize
long waves which are otherwise stable for moderately large values of n (this is the
so-called thin-layer effect as described in Chen (1995) in the absence of electric
fields) – compare for example figures 14(a), 14(d) with figure 15(f ). The complicated
stability characteristics uncovered in the results of figure 15 indicate that caution
must be exercised when applying long-wave theories valid for small k and hoping
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Figure 15. Two-fluid Poiseuille flow for the parameter values µ= 2, Re1 = 1, ρ = 1 and Eb =1:
neutral stability curve in the (k, n)-plane under the action of the electric field in various cases.
(a) σ = 4, ε = 15 (ε <σ 2), 0.1 <n< 1.5; (b) σ = 4, ε = 15 (ε < σ 2), 1.5 <n< 20; (c) σ = 4,
ε = 16 (ε = σ 2), 0.1 < n < 1.5; (d) σ = 4, ε = 16 (ε = σ 2), 1.5 < n < 20; (e) σ = 4, ε = 17 (ε > σ 2),
0.1 <n< 1; (f ) σ =4, ε = 17 (ε >σ 2), 1 <n< 20.

for the qualitative predictions to hold at larger k also. As an example, we consider
n=10 in figure 15(f ). The flow is initially long-wave unstable, but as k is increased,
we calculated a band of stability with relatively long waves; this then gives way to
a band of instability and finally the flow becomes short-wave stable at sufficiently
large k. The short-wave stability comes from the presence of an electric field (surface
tension is absent throughout) – in fact, in the absence of an electric field, the flow is
short-wave unstable for sufficiently large n (see figure 14a), and we can see that the
electric field can be used to reverse such characteristics.

Figure 16 shows the effect of the electric field on the NSC in the (k, n)-plane for
a large viscosity ratio µ = 20, Eb = 1 and fixed Reynolds number Re1 = 1. The NSC
without electric field (Eb = 0) is shown in figure 16(a), showing that n=

√
20 is a

neutral stable line. The effect of the electric field on the NSC in the (k, n)-plane is
presented for σ =6 in three cases: figure 16(b), ε =35 (ε <σ 2); figure 16(c), ε = 36
(ε = σ 2); figure 16(d) ε = 37 (ε > σ 2). We see that the NSCs have shapes which are
topologically similar to those corresponding to µ = 2 and Eb = 0.1 in figure 14.

We now discuss (figure 17) the second type of neutral stability curves in the
(k, Re1)-plane for a specific flow configuration corresponding to fixed values of µ = 2
and n= 10. The NSC without electric field (Eb = 0) has been calculated by Hooper
(1989) up to Reynolds numbers of around Re1 = 600. In figure 17(a), we confirm
Hooper’s results and extend them up to Re1 = 103. An interfacial mode triggered by
the difference in viscosities between the two fluids occurs for moderate Reynolds-
number values (surface tension being absent). However, at about Re1 = 290, a shear
mode caused by the difference of shear velocities between the two fluids, is seen to
appear and the two modes coexist for a certain range of Reynolds numbers. For the
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stability curve in the (k,Re1)-plane under the action of the electric field for different Eb values
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one-fluid Poiseuille flow, the shear mode emerges at about Re1 = 5772, and in the
two-fluid cases studied here it can appear at much smaller Reynolds numbers. We
also find that when the two modes co-exist, the interfacial mode dominates at short
wavelengths (surface tension being absent), while the shear mode predominates at
long wavelengths. Such stability characteristics are relatively clear, but they become
more complex in the presence of an electric field. To illustrate this, we present
results of a computation having σ = 4, ε = 17 and different values of Eb, as shown in
figure 17(b–f ) (these values of conductivity and permittivity ratios place the flow in
the stable regime, JE < 0, according to the long wave theory – see figure 5). Specifically,
figure 17(b) shows that for Eb =0.1, the shear mode disappears and the instability
is dominated by the interfacial mode. The upper and lower branch structure typical
of high-Reynolds-number instabilities in shear flows appears to be pushed to higher
Reynolds numbers, which falls outside our computational range (our computations
go as high as Re1 = 103). At the same time, the interfacial mode loses stability and
bends down to support a larger unstable domain (see figure 17d). In figures 17(c),
17(d), 17(e) and 17(f ), the value of Eb is increased systematically and the overall
finding is that the instability is enhanced. In particular, at a value of Eb between 0.55
and 0.56, the open branch that is indicated in figure 17(b) becomes closed and the
island of stability it supports shrinks with increasing Eb - compare the neutral curves
in going from figure 17(c) to 17(f ) (the results show the effect of the electric field
on the interfacial mode – the shear mode probably existing as well, but at a much
larger value of Re1). We found numerically that as Re1 increases further, the island
of stability shrinks and disappears completely at approximately Re1 = 6.

Figure 18 shows the NSC for the case µ = 2 and n= 20, where the upper layer is
twice as thick as in the case of figure 17. Hooper (1989) presented the NSC without
an electric field (Eb = 0) up to a Reynolds number of about Re1 = 130 for these values
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of µ and n. However, we have run our code up to Re1 = 500 and detected another
shear mode at about Re1 = 465, as shown in figures 18(a) and 18(b). (The presence
of two shear modes is an interesting characteristic of the two-fluid flow.) Figure 18(c)
shows the neutral curves at the relatively small value of Eb = 0.1. The overall effect of
the electric field in this case is to stabilize long waves and destabilize short waves. The
two main branches discernible in figure 18(a) merge when Eb = 1 to produce a main
upper branch above which the flow is unstable, and a loop consisting of an upper and
lower branch inside which the flow is unstable – see figure 18(c). The second shear
mode shown in the magnification (figure 18b), completely disappears when the field
is turned on and most probably shifts to much higher Reynolds numbers. A further
increase of Eb to a value of 0.2 (see figure 18d) enhances the trends noted above,
namely, short waves are destabilized and long waves stabilized. This manifests itself
by the lowering of the main upper branch and the shift to higher Reynolds numbers
of the upper and lower branch loops which supports instability for a narrow range of
wavenumbers (the nose of the loop is only just present at Eb =0.2 as seen in the lower
right-hand part of figure 18d). A further increase to Eb =1 (see figure 18e) reinforces
the destabilization and for the range of parameters used in our computations, the
main upper branch is the only feature left, dividing the (Re1, k)-plane into an upper
unstable domain and a lower stable one, stability being possible only for sufficiently
long waves.

Thus far, we have investigated the role of the electric field on the interfacial
instability in the absence of surface tension. Surface tension acts to stabilize sufficiently
short waves and we provide representative results of its effect on the instability of
the present problem. In figures 19 and 20, we show the effect of surface tension on
the results of figure 13. The value of the surface tension parameter is T = 0.001.
Figure 19 corresponds to the modifications of figure 13(c) and shows growth rates
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Figure 20. Two-fluid Poiseuille flow for the parameters n= 3, µ= 8, ρ = 1, σ = 2 and ε = 10.
Solid lines correspond to the results in the absence of surface tension, while dashed lines show
the results when T = 0.001.

versus wavenumber for n= 3, µ = 8, Re1 = 1, ρ = 1, σ =4 and ε = 5 (for this set of
parameters, the electric field is destabilizing – see earlier remark). It is seen that the
presence of surface tension modifies the short-wave behaviour (large k) and provides a
cutoff value (which increases with Eb) above which the waves are damped. For longer
waves (in fact for k < 1, approximately), the effect of surface tension is not significant.
Similar findings are established from the computations presented in figure 20 which
adds surface tension to the results of figure 13(d) for n= 3, µ =8, Re1 = 1, ρ =1,
σ = 2 and ε = 10 (the electric field is now stabilizing). As observed from the figure,
surface tension provides a wavenumber cutoff at a value of k ≈ 3 for the Eb = 0
results, and enhances the damping of short waves according to cik ∼ −k for k � 1
(this asymptotic behaviour is generic in the presence of surface tension in the present
problem, and for brevity it is not analysed further). In addition, surface tension
reduces growth rates of the most unstable (or least stable) waves, as seen from the
results in figures 19 and 20.

5. Conclusions
In this work, we have studied the linear stability of two conducting viscous fluids

bounded between channel walls and subjected to an electric field normal to the fluid
interface. We have studied the general situation where the fluids are leaky dielectrics,
which supports surface charges at the interface, as well as the situation where the
fluids can be modelled as perfect dielectrics, which was considered as a special case in
our study. The two fluids can have different viscosities, densities, permittivities and,
more importantly, different finite conductivities. As a consequence, the electric field
can cause an electrical tangential shear stress at the interface.

We have performed the long-wave linear stability analysis within the general Orr–
Sommerfeld framework, considering that the base flow can be either Couette or
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Poiseuille flow. We have then derived a general expression for the eigenvalue for the
wave speed, c, which depends on the ratio of permittivities ε, ratio of conductivities
σ , ratio of viscosities µ, and ratio of initial depths n of the two fluid layers.

For perfect dielectrics, where there are no surface charges at the interface (EH-Ip),
or for a perfectly conducting interface where the conductivity of one fluid is much
higher than that of the other fluid (EH-If), there is only a normal polarization force
and no electrical tangential shear stress induced by the electric field at the interface.
In this case, the electric field always has a destabilizing effect for both types of base
flow investigated (Couette and Poiseuille flow), independently of the particular value
of the ratio of permittivities ε. This confirms the results available in the literature
(Melcher 1963; Mohamed et al. 1995). This result has great significance for practical
applications, such as those where mixing is highly sought, e.g. in microfluidic systems.

On the other hand, for leaky dielectrics where the interface admits surface charges
due to the finite conductivity of the two fluids, we have shown that the electric
field can have either a destabilizing or a destabilizing effect, depending on the ratio
of permittivities ε and ratio of conductivities σ between the two fluids. Since for
both Couette and Poiseuille flows, there always exist unstable modes due to viscosity
stratification, it is possible to stabilize the system by using an electric field.

We have also addressed the stability problem for all wavenumbers using numerical
computations based on the Chebyshev spectral method. The long-wave dispersion
relation earlier derived analytically was confirmed numerically in the absence of
surface tension. Numerical simulations also led to different shapes for the neutral
stability curve (NSC) under the action of the electric field. One important result
found here was that the electrical normal stress can vanish at the interface while the
electrical tangential stress remains non-zero. Based on the different directions of the
electrical normal stress at the interface (ε = σ 2, ε <σ 2 or ε > σ 2), the NSC can take
different forms.

Finally, we consider surface-tension effects. As pointed out by a referee, surface
tension coupled with the thin-layer effect (see § 1), can completely stabilize a two-
layer system at low Reynolds numbers. We can use our present results to speculate
judiciously on the effect of surface tension in the presence of electric fields. For
example, figure 16(a) shows a long-wave stability with Eb =0 at moderately large n,
along with short-wave instability due to zero surface tension. Inclusion of surface
tension may completely stabilize this region. Inspection of figure 16(b), indicates that
inclusion of an electric field completely destabilizes the flow for a range of n; inclusion
of surface tension would regularize the short-wave instability.
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Appendix A
The non-dimensional system of equations reads

∇ · u(i) = 0, i = 1, 2, (A 1)

∂u(1)

∂t
+
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u(1) · ∇

)
u(1) = −∂p(1)
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u(1)(−η1) = 0, v(1)(−η1) = 0, (A 6)

u(2)(η2) = 1, v(2)(η2) = 0, (A 7)
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Appendix B
The first-order problem can be written as
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− φ

(1)
0

d2U (1)

dy2

]
,

d4φ
(2)
1

dy4
= iRe2

[(
U (2) − c0

)d2φ
(2)
0

dy2
− φ

(2)
0

d2U (2)

dy2

]
,

φ
(1)
1 (−η1) =

dφ
(1)
1

dy
(−η1) = 0, φ

(2)
1 (η2) =

dφ
(2)
1

dy
(η2) = 0,

d2φ
(1)
1

dy2
(0) − µ

d2φ
(2)
1

dy2
(0) + iRe1EbQT = 0,

d3φ
(1)
1

dy3
(0) − µ

d3φ
(2)
1

dy3
(0) + iRe1(ρQ0 − EbQN ) = 0,

dφ
(1)
1

dy
(0) − dφ

(2)
1

dy
(0) = − c1φ0(0)

(c0 − 1)2
(a2 − a1),

where we have used the fact that ŝ = ŝ0 + kŝ1 + O(k2), ŝ0 = φ0(0)/(c0 − 1), ŝ1 =
−c1φ0(0)/(c0 − 1)2, φ0(0) = 1. The terms Q0, QT , QN can be simplified to lead to
the following expressions: Q0 = ((ρ − 1)/ρF )(1/(c0 − 1)) + (1/ρ − 1)[(c0 − 1)B2 + a2],
QT = σ (σ − ε)(η1 + η2)/(η2 + ση1)

3, QN = (σ − 1)(ε − σ 2)/(η2 + ση1)
3. The solution

to the first order then becomes

φ
(1)
1 = B11y + C11y

2 + D11y
3 + H1(y),

φ
(2)
1 = B12y + C12y

2 + D12y
3 + H2(y),

where H1(y), H2(y) are the particular solutions of the first order ODE problem given
by

H1(y) =
A1D01

210
y7 +

a1D01

60
y6 +

a1C01 − 3c′
0D01 − A1B01

60
y5 − c′

0C01 + A1

12
y4,

H2(y) =
A2D02

210
y7 +

a2D02

60
y6 +

a2C02 − 3c′
0D02 − A2B02

60
y5 − c′

0C02 + A2

12
y4.

Here, c′
0 = c0 − 1, Ai , ai come from the velocity profiles (2.16), (2.17), and the

coefficients B0i , C0i and D0i (i = 1, 2) can be deduced from the leading-order solution.
Since the constant factor of the eigenvalue is taken to be φ(1)(0) = φ(2)(0) = φ(0) = 1,
the constant term in the first-order solutions is chosen to be zero. The coefficients
B1i , C1i , D1i (i =1, 2) are solved from the first-order boundary conditions and the
first-order eigenvalue takes the form

c1 = iRe2(J0 + JE),

where Re2 = Re1(ρ/µ) is the Reynolds number of the upper fluid and

J0 = µQ2
L(a2 − a1)H12,
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where

H12 =

{
1

µ

[
H ′

2(η2) − 2H2(η2)

η2

]
− 1

ρ

[
H ′

1(−η1) +
2H1(−η1)

η1

]
+

1
µ
η2

2 − η2
1

2(η1 + η2)

×
[
H2(η2)

η2
2

− H ′
2(η2)

η2

− H1(−η1)

ρη2
1

− H ′
1(−η1)

ρη1

]
+

η1

6

(
η1 +

1
µ
η2

2 − η2
1

η1 + η2

)
Q0

}
.
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